Scheme->C notes for An Introduction to Scheme

Joel F. Bartlett

An Introduction to Scheme, by Jerry D. Smith, is a recent text on the programming language Scheme.
Rather than being directed at a specific implementation of Scheme, it attempts to stick close to the
dialect defined in the Revised* Report on the Algorithmic Language Scheme that is the base for many
implementations including Scheme->C. This document provides section notes to point out the differ-
ences between TI PC Scheme used in the text and Scheme->C. The user will also find it helpful to read
An Introduction to Scheme->C in 19 Prompts and have the Scheme->C Index to the Revised* Report
on the Algorithmic Language Scheme and the Revised* Report on the Algorithmic Language Scheme
available for reference.

1.8 ((((()N)

Scheme->C does not have an internal editor. Instead, users use the editor of their choice (which may
or may not have parentheses matching) and then use load to load the file into the Scheme system.

1.10 PC Scheme and the Listener

This is what the interaction on page 9 looks like in Scheme->C:

> (+ 3 2)

5

> (load "examples.sc")
SQUARE

"examples.sc"
> (square 2)
4

> (exit)

User input is prompted by “>”, Scheme->C files end with the suffix “.sc”, and the command primitives
%c and %d are not supported. User input is not evaluated until the user types return.

2.2 The Scheme Listener

Scheme->C is started by the command s2ci. Once the command is executed, the window looks like
this:
$ s2ci

Scheme->C —-- 0lsep91jfb —- Copyright 1989 Digital Equipment Corporation
>

When the evaluation of an expression results in an error, the debugger is entered. It prints an error
message followed by a procedure call traceback. It then prompts the user with “>>” to allow commands
to inspect the state of the computation where the error occurred. For now, simply type control-D to
return to the main read-eval-print loop.

> (square 2)
x*%x*x* SQUARE Top-level symbol is undefined
(SQUARE 2) in ENV-0

(EVAL ...)

(SCREP_REP ...)
(READ-EVAL-PRINT ...)
>> "D

> (load "examples.sc")
SQUARE

"examples.sc"
> (square 2)
4

> (exit)

2.3 Simple Arithmetic

Most Scheme—->C systems do not have bignums. Numbers are represented as either 29-bit integers or
64-bit floating point values.

Exercise for the student: Add bignums to Scheme—->C.

The boolean constant for true is #t and false is #f. In keeping with tradition, both the empty list () and
#f are considered to be false. It is good programming practice to not use the empty list () as a synonym
for #f, and in IEEE compliant Scheme’s your program won’t work as the empty list () is a synonym for
#t!

2.4.2 Constants

The constants #!true, #!false, and #!null are not implemented, use #t, #f, and ’() respectively. The
character constants #\backspace, #\page, and #\rubout are not implemented.

2.4.4 Literal Expressions

The value of #f is false, represented as #f, which is not the same as the empty list (). While both #f
and () are considered to be false when evaluating a boolean expression, they are not equivalent. Note
that the empty list is not a self-evaluating constant. In order to avoid an error, one must quote it when
entering it into Scheme:

> ()

> |

x*xxxx EVAL Argument contains an item that is not self-evaluating: ()
(EVAL ...)

(SCREP_REP ...)

(READ-EVAL-PRINT ...)

>> "D

3.2 The Global Environment

There is only one top level environment that contains both user and system definitions.

5.2 Logical Operators

Since #f and the empty list () are different, #f is always returned when a predicate returns false:

5.7 begin
In the text, the programming convention is that one calls newline and then calls display. In printing

to the terminal with Scheme->C, it is better to call display and then call newline as a newline is not
automatically generated when Scheme prompts the user for additional input.

8.2 Characters

The following #\char-name forms are supported: #\formfeed, #\linefeed, #\newline, #\return,
#\space, and #\tab.

8.4.1 Character Predicates

The user need not define these as they are part of the system.

8.4.3 String Conversion Functions

See the Scheme->C documentation for information about number->string and string->number.

9.4 User-defined Port Operations

Ports in Scheme->C are represented as a pair of the symbol port and the procedure that implements
it. For example:

> (current-input-port)
(PORT . #*PROCEDURE=*)
>

Don'’t forget to put the call to newline after the second call to display when writing addtwo.

9.6 Strings as Ports

Strings can be opened as input ports by open-input-string and as output ports by open-output-
string. See the index for more details.

9.7 A Utility for Reading Lines: read-In

Users will not see either the backspace or rubout characters as they are handled by the workstation’s
terminal emulator.

10.2 Debugging and Lexical Scope

A pretty-print procedure is provided, pp, but it does not pretty-print the text of a procedure.

Breakpoints may be set on the entry and exit of any procedure defined in the top level environment.
Rather than adding a call to bkpt as was done in the text, a user would set a breakpoint on each call
to < and observe the value of i:

> (one-to-y-sqrd 3)

0 -calls - (> 1 3)
0- i

1

0- "D

0 -returns- #F

0- "D

0 —-calls - (> 0 3)
0- i

0

0- "D

0 -returns- #F

0- "D

0 —calls - (> -1 3)
0- 1

-1

0- "D

0 -returns- #F

0- "D

0 -calls - (> -2 3)
0- (top-level)

>

On each entry to >, the values of it’s arguments are printed. The value of i can be examined by
entering i followed by a return. When control-D or (proceed) is entered, the function is evaluated and
the result is printed. To continue with the computation, enter control-D or (proceed). Once it become
clear that the program is in error, the user is able to return to the top level read-eval-print loop by
entering (top-level).

Tracing is done using the trace and untrace commands:

> (one-to-z-sqrd 3)

12

> (trace one-to-z-sqrd)
(ONE-TO-Z-SQRD)

> (one-to-z-sqrd 3)
(ONE-TO-Z-SQRD 3)

==> 12

12

> (untrace one-to-z-sqgrd)
(ONE-TO-Z—-SQRD)

>

The bpt command puts a breakpoint on both the entry and exit to a procedure. The unbpt command
removes a breakpoint. Here’s the example on page 141:

> (bpt sqgr)

SOR

> (one-to-z-sqrd 3)
(ONE-TO-Z-SQRD 3)

1 -calls - (SQR 1)
1- °D

1 —-returns- 2

1- "D

1 -calls - (SQR 2)
1- °D

1 -returns- 4

1- "D

1l —-calls - (SQR 3)
1- °D

1 -returns- 6

1- (top-level)
> (unbpt sqgr)

(SQR)

>

When both sqr and one-to-z-sqrd are traced, one gets the following output.

> (trace one-to-z-sqgrd)
(ONE-TO-Z—-SQRD)

> (trace sqr)

(SQR)

> (ONE-TO-Z-SQRD 3)
(ONE-TO-Z—-SQRD 3)

>

Tracing the recursive function ftl produces the following output.

10.3 Debugging in a Lexically Scoped Environment

Conditional breakpoints can be placed on procedures using the bpt special form. The second argument
is a test procedure that is either the name of a top level procedure or a lambda expression defining a
procedure. On each entry to the procedure, the test procedure is evaluated with the arguments to the
breakpointed procedure. When the test procedure returns a true value, the breakpoint is taken.

> (bpt one-to-n (lambda (x) (>= x 3)))
ONE-TO-N
> (mean—-table 5)

N MEAN OF 1 TO N

-calls - (ONE-TO-N 3)

O O WM

The first time the argument to one-to-n is >= 3, the breakpoint is taken. Once at a breakpoint, the
backtrace procedure allows the call stack and environments to be inspected.

0- (backtrace)

(ONE-TO-N N) in ENV-0

(/ (ONE-TO-N N) N) in ENV-1

(DISPLAY (ONE-TO-N-MEAN N)) in ENV-2

(BEGIN (NEWLINE) (DISPLAY N) (DISPLAY " ")y (DIS ... in ENV-3
(EVAL ...)

(SCREP_REP ...)

(READ-EVAL-PRINT ...)

#F

0

Environments are identified by the symbols env-i. The value of an environment is an a-list of symbols
and their values. It’s often useful to use pp to print out an environment. An expression may be

evaluated within a specific environment by calling eval with two arguments, the expression and the
environment.

0- env-1

((LOCATION . "inside one-to-n-mean") (N . 3))

0- env-3

((N . 3) (\d\o\l\o\o\p . #+*PROCEDURE=*) (PRINT-HEADER .#*PROCEDU

RE*) (HEADER-LINE . "==== == == ====") (

HIGH-BOUND . 5))

0- (pp env-3)

((N . 3)
(\d\o\1\o\o\p . #+*PROCEDURE~)
(PRINT-HEADER . #*PROCEDUREx)
(HEADER-LINE . "==== == == ====")
(HIGH-BOUND . 5))#T

0- (eval "high-bound env-3)

5

0- "D

0 —-returns—- 6

0- "D

2

4

0 -calls - (ONE-TO-N 4)
0- "D

0 —-returns- 10

0- "D

2.5

5

0 -calls - (ONE-TO-N 5)
0- "D

0 —-returns—- 15

0- "D

3

#E

>

The same techniques that one uses to explore a program that has hit a breakpoint can be used to
investigate a running program. Here a simple loop is run. When the user enters control-C the running
program is interrupted. A breakpoint is put on eq? and then the program is continued by typing
control-D. Once the breakpoint is hit, (eq? 0 0) is executed, and then proceed is used to change the
result returned by eq?, which causes the loop to complete.

> (let loop ((i 0)) (if (eg? i 0) (loop i) ’done))
e

**kx*x*x INTERRUPT **x*x*xx%

(EQ? I 0) in ENV-0

(IF (EQ? I 0O0) (LOOP I) ’'DONE) in ENV-1

(EVAL ...)

(SCREP_REP ...)

(READ-EVAL-PRINT ...)

>> (bpt eg?)

EQ?

>> "D

0 -calls - (EQ? 0 0)
0- "D

0 -returns- #T

0- (proceed #f)

DONE

>

Finally, these techniques can be used to investigate the environment when an error occurs. Note that
when control-D is entered to continue, Scheme returns to the top level read-eval-print loop.

> (let ((1 0)) (car (car (car 1))))
**%%% CAR Argument not a PAIR: O
(SCRT1_S$_CAR-ERROR ...)

(CAR ...)

(CAR I) in ENV-0

(CAR (CAR TI)) in ENV-1

(CAR (CAR (CAR I))) in ENV-2

(

(

(

EVAL ...)

SCREP_REP ...)
READ-EVAL-PRINT ...)
>> i

0

>> env-0

((x . 0))

>> "D

>

Exercise for the student: implement assert.

11.3 dir: A Utility for Listing Filenames (Implementation-specific)

In order to implement this in Scheme->C you’ll need to implement your own version of sort! and use
(open-input-port "Is") to generate a list of file names.

11.4 format: A Utility for Formatted Output

Scheme->C contains a procedure format. See the documentation for details.

13.2 Memory Organization

Exercise for the student: implement append!.

15.4 Macros [OPTIONAL]

Scheme->C macros implements “expansion passing” macros based upon the ideas found in Expansion-
Passing Style: Beyond Conventional Macros, 1986 ACM Conference on Lisp and Functional Program-

ming, 143-150.

The simplest form of a macro is a constant. The arguments to the special form define-constant are
the symbol identifying the constant and the expression to evaluate to calculate it’s value.

> (define-constant radius 23)

RADIUS

> (define-constant pi 3.14159)

PI

> (define-constant circumference (x pi radius 2))
CIRCUMFERENCE

> (define-constant area (x 3.14159 (x radius radius)))
AREA

> area

1661.90111

>

The second type of macro defines an in-line procedure. The form define-in-line associates a symbol
with a procedure definition. All calls to the procedure are replaced by the lambda expression defining
the procedure.

> (define-in-line (plus3 x) (+ x 3))

PLUS3

> (plus3 5)
38

>

The most general form of macro expansion allows the user to examine a procedure call and then selec-
tively cause further macro expansion. The definition for plus3 can also be written as:

> (define-macro plus3
(lambda (form expander)
(expander ‘(+ , (cadr form) 3) expander)))
PLUS3
> (plus3 8)
11
>

The macro is defined by a procedure that takes two arguments: the form to be expanded, and a proce-
dure to do further expansion. It’s typical action is to build an expanded form and then call the further
expansion procedure with the new form and the further expansion procedure as arguments. For exam-
ples of use of this type of macro expander, the reader is directed to the file scrt/predef.sc that defines
the macros used by the compiler.

N.B. Macro definitions may not be placed inside procedure definitions.

